

Medical Coverage Policy

Effective Date	.10/15/	2025
Next Review Date	05/15/	2026
Coverage Policy Number		0028

Plasma Brain Natriuretic Peptide in the Outpatient Setting

Table of Contents

Related Coverage Resources

Overview	2
Coverage Policy	2
Coding Information	3
General Background	7
Health Equity Considerations	13
Medicare Coverage Determinations	14
Appendix	14
References	15
Revision Details	19

Heart, Lung, and Heart-Lung Transplantation

INSTRUCTIONS FOR USE

The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide utilization review services to clients and do not make coverage determinations. References to standard benefit plan language and coverage determinations do not apply to those clients. Coverage Policies are intended to provide guidance in interpreting certain standard benefit plans administered by Cigna Companies. Please note, the terms of a customer's particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer's benefit plan document may contain a specific exclusion related to a topic addressed in a Coverage Policy. In the event of a conflict, a customer's benefit plan document always supersedes the information in the Coverage Policies. In the absence of a controlling federal or state coverage mandate, benefits are ultimately determined by the terms of the applicable benefit plan document. Coverage determinations in each specific instance require consideration of 1) the terms of the applicable benefit plan document in effect on the date of service; 2) any applicable laws/regulations; 3) any relevant collateral source materials including Coverage Policies and; 4) the specific facts of the particular situation. Each coverage request should be reviewed on its own merits. Medical directors are expected to exercise clinical judgment where appropriate and have discretion in making individual coverage determinations. Where coverage for care or services does not depend on specific circumstances, reimbursement will only be provided if a requested service(s) is submitted in accordance with the relevant criteria outlined in the applicable Coverage Policy, including covered diagnosis and/or procedure code(s). Reimbursement is not allowed for services when billed for conditions or diagnoses that are not

Page 1 of 19

covered under this Coverage Policy (see "Coding Information" below). When billing, providers must use the most appropriate codes as of the effective date of the submission. Claims submitted for services that are not accompanied by covered code(s) under the applicable Coverage Policy will be denied as not covered. Coverage Policies relate exclusively to the administration of health benefit plans. Coverage Policies are not recommendations for treatment and should never be used as treatment guidelines. In certain markets, delegated vendor guidelines may be used to support medical necessity and other coverage determinations.

Overview

This Coverage Policy addresses measurement of plasma brain natriuretic peptide (BNP) or NT-proBNP in an outpatient setting.

Coverage Policy

Outpatient testing of plasma brain natriuretic peptide (BNP) or NT-proBNP is considered medically necessary for ANY of the following indications:

- to distinguish between heart failure (HF) and primary lung disease in a dyspneic individual
- asymptomatic individual with severe aortic stenosis to aid in timing of intervention
- for risk stratification in chronic HF
- in Stage A and Stage B* HF individuals when ordered with cardiovascular team input as part of prevention and management of HF
- monitoring response to treatment for HF
- in children ages 14 and under at increased risk for endocardial biopsy who are status post heart transplant when ordered in combination with echocardiography or electrocardiogram
- individual on the waitlist for cardiac transplant
- suspected amyloidosis or for amyloidosis staging
- during diagnosis or work-up of multiple myeloma
- individual undergoing elevated risk* noncardiac surgery and ONE of the following:
 - known cardiovascular disease (CVD)
 - > age ≥65 years
 - ➤ age ≥45 years with symptoms suggestive of CVD *combined surgical and patient characteristics predict an elevated risk of major adverse cardiovascular event (MACE) of ≥1%
- following hospital discharge at office follow-up in Stage D or Medium/High-Risk Stage C myocarditis
- on immunotherapy and either of the following:
 - > at baseline and serially during treatment to detect abnormal blood biomarkers that may precede symptomatic myocarditis induced by an Immune Checkpoint Inhibitor (ICI)
 - Grade 2 cytokine release syndrome (CRS) and persistent tachycardia

Outpatient testing of plasma brain natriuretic peptide (BNP) or NT-proBNP testing for any other indication, including as part of a cardiovascular disease risk panel/profile, is considered not covered or reimbursable.

*Stage A:	At risk for HF but without symptoms, structural heart disease, or cardiac	
At risk for	biomarkers of stretch or injury (e.g., patients with hypertension, atherosclerotic	
HF	CVD, diabetes, metabolic syndrome and obesity, exposure to cardiotoxic agents,	
	genetic variant for cardiomyopathy, or positive family history of cardiomyopathy).	

Page 2 of 19

Stage B: Pre-HF	Patients without current or previous symptoms/signs of HF but evidence of one of the following • Structural heart disease • Evidence of increased filling pressures • Risk factors and

Coding Information

Notes:

- 1. This list of codes may not be all-inclusive since the American Medical Association (AMA) and Centers for Medicare & Medicaid Services (CMS) code updates may occur more frequently than policy updates.
- 2. Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement.

Considered Medically Necessary when criteria in the applicable policy statements listed above are met:

CPT®* Codes	Description
83880	Natriuretic peptide

ICD-10-CM	Description
Diagnosis Codes	
C90.0-	Multiple myeloma
C90.02	
D89.832	Cytokine release syndrome, grade 2
E10.10-	Type 1 diabetes mellitus
E10.9	
E11.00-	Type 2 diabetes mellitus
E11.A	
E13.00-	Other specified diabetes mellitus
E13.9	
E66.01-	Overweight and obesity
E66.9	
E85.0-E85.9	Amyloidosis
E88.810-	Metabolic syndrome and other insulin resistance
E88.819	
I05.0-I05.9	Rheumatic mitral valve diseases
I06.0-I06.9	Rheumatic aortic valve diseases
I07.0-I07.9	Rheumatic tricuspid valve diseases
108.0-108.9	Multiple valve diseases
109.0-109.9	Other rheumatic heart diseases
I10	Essential (primary) hypertension

Page 3 of 19

ICD-10-CM Diagnosis Codes	Description	
I11.0-I11.9	Hypertensive heart disease	
I13.0-I13.2	Hypertensive heart and chronic kidney disease	
I15.0-I15.9	Secondary hypertension	
I16.0-I16.9	Hypertensive crisis	
I1A.0	Resistant hypertension	
I20.0-I20.9	Angina pectoris	
I21.01-	ST elevation (STEMI) myocardial infarction of anterior wall	
I21.01	ST elevation (STEINI) myocardiai ililaretion of anterior wall	
I21.11-	ST elevation (STEMI) myocardial infarction of inferior wall	
I21.11	ST elevation (STEMI) myocardiai imarction of imenor wair	
I21.21-	ST elevation (STEMI) myocardial infarction of other sites	
I21.29	ST clevation (STEIT) my ocardial infaredion of other sites	
I21.3	ST elevation (STEMI) myocardial infarction of unspecified site	
I21.4	Non-ST elevation (NSTEMI) myocardial infarction	
I21.9	Acute myocardial infarction, unspecified	
I21.A1-	Other type of myocardial infarction	
I21.A9	other type of myocardia imaretion	
I21.B	Myocardial infarction with coronary microvascular dysfunction	
I22.0-I22.9	Subsequent ST elevation (STEMI) and non-ST elevation (NSTEMI) myocardial	
	infarction	
I24.0	Acute coronary thrombosis not resulting in myocardial infarction	
I24.81-	Other forms of acute ischemic heart disease	
I24.89		
I24.9	Acute ischemic heart disease, unspecified	
I25.10	Atherosclerotic heart disease of native coronary artery without angina pectoris	
I25.110-	Atherosclerotic heart disease of native coronary artery with angina pectoris	
I25.119		
I25.2	Old myocardial infarction	
I25.3	Aneurysm of heart	
I25.41-	Coronary artery aneurysm and dissection	
I25.42		
I25.5	Ischemic cardiomyopathy	
I25.6	Silent myocardial ischemia	
I25.700-	Atherosclerosis of coronary artery bypass graft(s), unspecified, with angina	
I25.709	pectoris	
I25.710-	Atherosclerosis of autologous vein coronary artery bypass graft(s) with angina	
I25.719	pectoris	
I25.720-	Atherosclerosis of autologous artery coronary artery bypass graft(s) with angina	
I25.729	pectoris Atherosclerosis of nonautologous biological coronary artery bypass graft(s) with	
I25.730- I25.739		
I25.750-	angina pectoris Atherosclerosis of native coronary artery of transplanted heart with angina	
I25.759	pectoris	
I25.760-	Atherosclerosis of bypass graft of coronary artery of transplanted heart with	
I25.769	angina pectoris	
I25.790-	Atherosclerosis of other coronary artery bypass graft(s) with angina pectoris	
I25.799	Achieroscierosis of other coronary artery bypass grant(s) with angina pectons	
143.733		

ICD-10-CM Diagnosis	Description	
Codes		
I25.810- I25.812	Atherosclerosis of other coronary vessels without angina pectoris	
I25.82	Chronic total occlusion of coronary artery	
I25.83	Coronary atherosclerosis due to lipid rich plaque	
I25.84	Coronary atherosclerosis due to calcified coronary lesion	
I25.85	Chronic coronary microvascular dysfunction	
I25.89	Other forms of chronic ischemic heart disease	
I25.9	Chronic ischemic heart disease, unspecified	
I27.0-I27.1	Other pulmonary heart diseases	
I27.20- I27.29	Other secondary pulmonary hypertension	
I27.81- I27.89	Other specified pulmonary heart diseases	
I27.9	Pulmonary heart disease, unspecified	
I28.0-I28.9	Other diseases of pulmonary vessels	
I34.0-I34.9	Nonrheumatic mitral valve disorders	
I35.0-I35.9	Nonrheumatic aortic valve disorders	
I36.0-I36.9	Nonrheumatic tricuspid valve disorders	
I37.0-I37.9	Nonrheumatic pulmonary valve disorders	
I40.0-I40.9	Acute myocarditis	
I41	Myocarditis in diseases classified elsewhere	
I42.0-I42.9	Cardiomyopathy	
I50.1-I50.9	Heart failure	
I51.4	Myocarditis, unspecified	
I5A	Non-ischemic myocardial injury (non-traumatic)	
J44.1	Chronic obstructive pulmonary disease with (acute) exacerbation	
J45.901	Unspecified asthma with (acute) exacerbation	
J90	Pleural effusion, not elsewhere classified	
J91.8	Pleural effusion in other conditions classified elsewhere	
J94.8	Other specified pleural conditions	
J94.9	Pleural condition, unspecified	
J96.00-	Acute respiratory failure	
J96.02		
J96.20-	Acute and chronic respiratory failure	
J96.22		
J96.90-	Respiratory failure, unspecified	
J96.92		
Q20.0-	Congenital malformations of cardiac chambers and connections	
Q20.9		
Q21.0-	Congenital malformations of cardiac septa	
Q21.9		
Q22.0-	Congenital malformations of pulmonary and tricuspid valves	
Q22.9		
Q23.0-	Congenital malformations of aortic and mitral valves	
Q23.9		
Q24.0-	Other congenital malformations of heart	
Q24.9		

Page 5 of 19 Medical Coverage Policy: 0028

ICD-10-CM Diagnosis	Description
Codes	
Q25.0-	Congenital malformations of great arteries
Q25.9	
Q26.0-	Congenital malformations of great veins
Q26.9	
R06.00-	Dyspnea
R06.09	
R06.2	Wheezing
R06.3	Periodic breathing
R06.4	Hyperventilation
R06.81	Apnea, not elsewhere classified
R06.82	Tachypnea, not elsewhere classified
R06.89	Other abnormalities of breathing
R06.9	Unspecified abnormalities of breathing
R07.1-R07.9	Chest pain
R60.0-R60.9	Edema
R73.03	Prediabetes
Z48.21	Encounter for aftercare following heart transplant
Z48.280	Encounter for aftercare following heart-lung transplant
Z51.12	Encounter for antineoplastic immunotherapy
Z76.82	Awaiting organ transplant status
Z79.630-	Long term (current) use of chemotherapeutic agent
Z79.634	
Z82.49	Family history of ischemic heart disease and other diseases of the circulatory
	system
Z92.21	Personal history of antineoplastic chemotherapy
Z94.1	Heart transplant status
Z94.3	Heart and lung transplant status

Not covered or Reimbursable:

ICD-10-CM Diagnosis	Description
Codes	
	All other codes

Not Covered or Reimbursable:

CPT®* Codes	Description
0309U	Cardiology (cardiovascular disease), analysis of 4 proteins (NT-proBNP, osteopontin, tissue inhibitor of metalloproteinase-1 [TIMP-1], and kidney injury molecule-1 [KIM-1]), plasma, algorithm reported as a risk score for major adverse cardiac event
0310U	Pediatrics (vasculitis, Kawasaki disease [KD]), analysis of 3 biomarkers (NTproBNP, C-reactive protein, and T-uptake), plasma, algorithm reported as a risk score for KD

*Current Procedural Terminology (CPT $^{\circ}$) ©2024 American Medical Association: Chicago, IL.

Page 6 of 19

General Background

Brain-type natriuretic peptide (BNP) or N-terminal (NT) pro hormone BNP (NT-proBNP) testing has been proposed as an adjunct to other clinical testing in numerous clinical situations including but not limited to heart failure (HF). BNP/ NT-proBNP is a hormone secreted primarily by the heart muscle. The heart releases more BNP and NT-proBNP when the heart is distended from working too hard, as in heart failure.

Plasma levels of BNP are less than 100pg/mL in most healthy individuals; reference ranges depend on age and gender. Assays for both BNP and NT-proBNP are available; a clear advantage of one biomarker over the other for any particular application has not been established. A major limitation of BNP is that a wide range of values is observed in patients with and without HF, and all of the determinants of the circulating BNP level have not yet been well established. In individuals without heart failure, higher levels are associated with female gender, advanced age, and lower body mass index.

U.S. Food and Drug Administration (FDA)

The laboratory testing of serum circulating BNP and NT-proBNP levels does not require FDA-approval. There are, however, a number of testing devices have received FDA 510(k) approval. These devices can be found on the FDA Center for Devices and Radiological Health 510(k) database, product code NBC. An example of an FDA-approved BNP device is the Triage® B-Type Natriuretic Peptide (BNP) Test (Biosite, Inc., San Diego, CA). The test is intended to be used as an aid in the following (FDA, 2005):

- diagnosis of heart failure
- assessment of heart failure severity
- risk stratification of patients with acute coronary syndromes (ACS)
- risk stratification of patients with heart failure

An example of a NT-proBNP test system is the Elecsys® proBNP Immunoassay (Roche Diagnostics Corporation, Indianapolis, IN). The intended use is as an aid in the diagnosis of individuals suspected of having CHF. The test is further indicated for the risk stratification of patients with ACS and CHF.

Although some of the components of Prevencio, Inc. panel tests are individually FDA-approved, at this time it does not appear that Prevencio's artificial-intelligence (AI)-driven algorithm panel tests are FDA-approved.

HEART FAILURE

Professional Societies/Organizations

American College of Cardiology (ACC): The 2023 ACC Expert Consensus Decision Pathway on Management of Heart Failure With Preserved Ejection Fraction (Kittleson, et al., 2023) notes that the Universal Definition of heart failure (HF) requires symptoms and/or signs of HF caused by structural/functional cardiac abnormalities and at least 1 of the following: 1) elevated natriuretic peptides; or 2) objective evidence of cardiogenic pulmonary or systemic congestion.

The American College of Cardiology (ACC) and the American Heart Association (AHA) Guideline for the Management of Heart Failure (Heidenreich, et al., 2022) lists the following Recommendations:

Page 7 of 19

2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure (Heidenreich, et al., 2022)	Class of Recommendation (COR)
4.2. Use of Biomarkers for Prevention, Initial Diagnosis, and Risk	and
Stratification Recommendations for Use of Biomarkers for	Level of Evidence
Prevention, Initial Diagnosis, and Risk Stratification:	(LOE)*
*See Appendix for ACC/AHA Class of Recommendation and Level of	of Evidence definitions
In patients presenting with dyspnea, measurement of B-type	COR: 1; LOE: A
natriuretic peptide (BNP) or N-terminal prohormone of B-type	
natriuretic peptide (NT-proBNP) is useful to support a diagnosis or exclusion of HF	
In patients with chronic HF, measurements of BNP or NT-proBNP	COR: 1; LOE: A
levels are recommended for risk stratification	
In patients hospitalized for HF, measurement of BNP or NT-proBNP levels at admission is recommended to establish prognosis	COR: 1; LOE: A
In patients at risk of developing HF, BNP or NT-proBNP-based	COR: 2a; LOE: B-R
screening followed by team-based care, including a cardiovascular	
specialist, can be useful to prevent the development of left	
ventricular (LV) dysfunction or new onset HF	
In patients hospitalized for HF, a predischarge BNP or NT-proBNP	COR: 2a; LOE: B-NR
level can be useful to inform the trajectory of the patient and	
establish a post-discharge prognosis	

2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure (Heidenreich, et al., 2022)					
ACC/AHA Stages of Heart Failure (HF)					
	Acciding Stages of Healt Failure (III)				
Stage	Definition				
Stage A:	At risk for HF but without symptoms, structural heart disease, or cardiac				
At-risk for HF	biomarkers of stretch or injury (e.g., patients with hypertension,				
	atherosclerotic CVD, diabetes, metabolic syndrome and obesity, exposure to				
	cardiotoxic agents, genetic variant for cardiomyopathy, or positive family				
	history of cardiomyopathy).				
Stage B:	Patients without current or previous symptoms/signs of HF but evidence of				
Pre-HF	one of the following				
	Structural heart disease				
	reduced left or right ventricular systolic function				
	reduced ejection fraction, reduced strain				
	> ventricular hypertrophy				
	> chamber enlargement				
	> wall motion abnormalities				
> valvular heart disease					
Evidence of increased filling pressures					
	 by invasive hemodynamic measurements by noninvasive imaging suggesting elevated filling pressures (e.g., 				
	Doppler echocardiography)				
	Risk factors and				
	 increased natriuretic peptide levels or persistently elevated cardiac 				
	troponin in the absence of competing diagnoses resulting in such				
	biomarker elevations such as acute coronary syndrome, CKD,				
	pulmonary embolus, or myopericarditis				

Page 8 of 19 Medical Coverage Policy: 0028

2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure (Heidenreich, et al., 2022) ACC/AHA Stages of Heart Failure (HF)			
Stage	Definition		
Stage C: Symptomatic HF	Structural heart disease with current or previous symptoms of HF.		
Stage D: Advanced HF	Marked HF symptoms that interfere with daily life and with recurrent hospitalizations despite attempts to optimize guideline-directed medical therapy (GDMT) (Heidenreich, et al., 2022)		

ACC: The 2024 ACC Expert Consensus Decision Pathway for Treatment of Heart Failure With Reduced Ejection Fraction (Maddox, et al., 2024) states: In the setting of worsening symptoms, reassessment of BNP or NT-proBNP may be informative. Therefore, measurement of BNP or NT-proBNP is useful to monitor risk, assist in decision-making regarding the ordering of imaging studies to evaluate LV remodeling, and to provide helpful objective data regarding decision-making for referral to an advanced HF specialist.

American Diabetes Association (ADA): The ADA Consensus Report on Heart Failure states that "Specific to individuals with diabetes, measurement of natriuretic peptides (B-type natriuretic peptide [BNP]; N-terminal pro-BNP [NT-proBNP]) or high-sensitivity cardiac troponin is particularly helpful to identify stage B HF and predict progression to symptoms or death from HF" (Pop-Busui, et al., 2022).

American Heart Association (AHA): The AHA 2017 Scientific Statement 'Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure' (Chow, et al., 2017) notes that monitoring natriuretic peptide concentrations in blood not only can provide the clinician information about the diagnosis and severity of HF but also can improve prognostication and treatment strategies.

MONITORING TREATMENT FOR HEART FAILURE Professional Societies/Organizations

ACC: In the 2021 Update to the 2017 ACC Expert Consensus Decision Pathway for Optimization of Heart Failure Treatment (Maddox, et al., 2021), the ACC notes that biomarkers have been examined for their role as markers of clinical responsiveness to guideline directed medical therapy (GDMT). This is due, in part, to the fact that a wide range of GDMTs may reduce BNP and NT-proBNP concentrations in parallel with the benefits of these therapies. The ACC states that in the GUIDE-IT (Guiding Evidence Based Therapy Using Biomarker Intensified Treatment in HF) trial, among patients with HFrEF, lowering NT-proBNP to <1,000 pg/mL was associated with significant reverse remodeling and improved outcomes (Daubert, et al., 2019). Similarly, in the PROVE-HF study, the speed and magnitude of NT-proBNP-lowering after ARNI initiation were associated with greater degrees of reverse cardiac remodeling and improved outcomes (Januzzi, et al., 2018; Januzzi, et al., 2020). Therefore, measurement of BNP or NT-proBNP is useful to monitor risk, assist in decision-making regarding the ordering of imaging studies to evaluate LV remodeling, and to provide helpful objective data regarding decision-making for referral to advanced HF therapies. Current evidence does not suggest targeting treatment to specific BNP or NT-proBNP levels (ACC/Maddox, et al., 2021).

AORTIC STENOSIS

Professional Societies/Organizations

ACC: The 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease states

Page 9 of 19

 In apparently asymptomatic patients with severe aortic stenosis (AS) (Stage C1) and low surgical risk, aortic valve replacement (AVR) is reasonable when the serum B-type natriuretic peptide (BNP) level is >3 times normal (Class IIa, Level of Evidence B-NR) (ACC/Otto/2021)

The 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease addresses Biomarker Studies under the section of Evidence Gaps and Future Directions, noting that "Although interest in using circulating biomarkers for risk stratification of patients with aortopathy has increased, biomarker expression has not been clearly associated with relevant clinical aortic events". The guideline does not specifically address plasma brain natriuretic peptide (BNP) or NT-proBNP (Isselbacher, et al., 2022).

HEART TRANSPLANT

Professional Societies/Organizations

International Society for Heart and Lung Transplantation (ISHLT): The ISHLT Guidelines for the Evaluation and Care of <u>Cardiac Transplant Candidates</u> (Peled, et al., 2024) addresses Serial Evaluation (3.3.1. Guidelines for Repeat Testing on the Waitlist):

- 3.3.1.9. Role of Biomarkers / Recommendations for Repeat Testing on the Waitlist: Cardiac Biomarker Assessment:
 - Natriuretic peptides (NP) should be determined at the time of initial evaluation of a patient with advanced heart failure (Class 1, LOE: B-R*). Periodic assessment of NP in a patient on the waitlist can be useful for early detection of clinical deterioration (Class 2a, LOE: B-R*).
 - Progressive significant reduction of NP levels, accompanied by meaningful clinical improvement, and in the absence of other poor prognostic features, can help identify patients on the waitlist whose disease has improved on GDMT to the point where removal from the waitlist can be considered. (Class 2a, LOE: C-LD) (Peled, et al., 2024).

The ISHLT Guidelines for the Care of <u>Heart Transplant Recipients</u> (Velleca, et al., 2023) noted the following:

- Recommendations for Rejection Surveillance by Endomyocardial Biopsy in Heart Transplant Recipients:
 - The standard of care for adolescents should be similar to adults, including surveillance endomyocardial biopsy (EMB) for heart allograft rejection for 3 to 12 months after HT. In younger children, especially infants, the risks associated with EMB and required general anesthesia may outweigh the surveillance benefit for comparably rare acute rejection; therefore, it is reasonable to use a combination of non-invasive screening methods (echocardiography, ECG, biomarkers) instead (Class IIa, Level of Evidence: C*)
 - ➤ It is reasonable to integrate biomarkers such as BNP and high-sensitivity troponins into a rejection monitoring strategy to identify higher risk patients who may benefit from additional evaluation for acute cellular rejection (ACR), antibody-mediated rejection (AMR), or cardiac allograft vasculopathy (CAV) (Class IIb, Level of Evidence C).
 - ➤ In younger children, especially infants, the risks associated with EMB and required general anesthesia may outweigh the surveillance benefit for comparably rare acute rejection; therefore, it is reasonable to use a combination of non-invasive screening methods (echocardiography, ECG, biomarkers) instead (Class IIa, Level of Evidence: C)
- Frequency of Routine Tests and Clinic Visits in Heart Transplant Recipients

Page 10 of 19

➤ The purpose of the follow-up visits is to monitor for rejection and screen for adverse events and may include the following: Surveillance EMB, and noninvasive rejection monitoring [Gene Expression Profiling (Allomap), DSA, BNP and high sensitivity troponins, donor-derived cell-free DNA] (Class I, Level of Evidence B) (Velleca, et al., 2023).

*International Society for Heart and Lung Transplantation Standards and Guidelines Committee Grading Criteria

- Class I Evidence and/or general agreement that a given treatment or procedure is beneficial, useful, and effective
- Class II Conflicting evidence and/or divergence of opinion about the usefulness/efficacy of the treatment or procedure
- Class IIa Weight of evidence/opinion is in favor of usefulness/efficacy
- Class IIb Usefulness/efficacy is less well established by evidence/opinion
- Class III Evidence or general agreement that the treatment or procedure is not useful or effective and in some cases may be harmful
- Level of evidence A: Data derived from multiple randomized clinical trials or metaanalyses
- Level of evidence B: Data derived from a single randomized clinical trial or large non-randomized studies
- Level of evidence C: Consensus of opinion of the experts and/or small studies, retrospective studies, registries

AMYLOIDOSIS

Professional Societies/Organizations

ACC: The 2023 ACC Expert Consensus Decision Pathway on Comprehensive Multidisciplinary Care for the Patient With Cardiac Amyloidosis, under the Section 7.6.1. Markers of Poor Prognosis in Cardiac Amyloidosis, states "For both amyloid monoclonal immunoglobulin light chain cardiomyopathy (AL-CM) and amyloid transthyretin cardiomyopathy (ATTR-CM), troponin and NTproBNP are powerful indicators of disease burden and prognosis. Multiple staging systems have been developed that rely predominantly on these biomarkers (ACC, 2023).

National Comprehensive Cancer Network Guidelines[™] (NCCN Guidelines[™]): The NCCN Guidelines for Systemic Light Chain Amyloidosis (Version 2.2025 — March 12, 2025) under Initial Diagnostic Workup (workup of patients with suspected amyloidosis), states the following: "Cardiac biomarkers in the serum provide a quantitative assessment of cardiac dysfunction (troponin I or T), and cardiac stress brain natriuretic peptide (BNP) or N-terminal prohormone of brain natriuretic peptide (NT-proBNP) are important predictors of outcome in amyloidosis as well as part of the cardiac response criteria. The NCCN panel recommends assessing BNP if NT-proBNP assessment is not available" (NCCN, 2025, MS-4).

Under Staging, the NCCN notes that while multiple prognostic models have been proposed for patients with amyloidosis, the NCCN panel recommends use of a staging system that incorporates NT-proBNP or BNP (MS-6).

MULTIPLE MYELOMA

Professional Societies/Organizations

NCCN: The NCCN Guidelines for Multiple Myeloma (Version 1.2025 — September 17, 2024) addresses BNP and NTproBNP. Under Diagnosis and Workup, the NCCN includes NT-proBNP iin their diagnostic work-up listing, and notes that if NT-proBNP is not available. BNP can be performed (NCCN, MS-3).

Page 11 of 19

NONCARDIAC SURGERY

Professional Societies/Organizations

2024 AHA/ACC/ACS/ASNC/HRS/ SCA/SCCT/SCMR/SVM Guideline for	Class of	
Perioperative Cardiovascular Management for Noncardiac Surgery	Recommendation (COR)	
(Thompson, et al., 2024)	and	
3.4. Preoperative Biomarkers for Risk Stratification	Level of Evidence	
Recommendations for Preoperative Biomarkers for Risk Stratificatio	(LOE)*	
*See Appendix for ACC/AHA Class of Recommendation and Level of Evidence definitions		
In patients with known CVD, or age ≥65 years, or age ≥45 years	COR: 2a; LOE: B-NR	
with symptoms suggestive of cardiovascular disease (CVD)		
undergoing elevated-risk noncardiac surgery (NCS), it is reasonable		
to measure B type natriuretic peptide (BNP) or N-terminal pro-B-		
type natriuretic peptide (NT-proBNP) before surgery to supplement		
evaluation of perioperative risk.		

MYOCARDITIS

Professional Societies/Organizations

ACC: The 2024 ACC Expert Consensus Decision Pathway on Strategies and Criteria for the Diagnosis and Management of Myocarditis includes 4.7.1. Longitudinal Surveillance of Stage C and D Myocarditis (Table 3). It notes that post-discharge office follow-up in 2-4 weeks* should include the following for Stage D or Medium-/High-Risk Stage C: 1) Biomarkers include hs-troponin and natriuretic peptide level (if elevated at baseline or clinical deterioration) and CRP (if elevated at baseline, especially in context of connective tissue disease). Further biomarker testing can be based on the results at first follow-up. 2) ECG, and 3) Echocardiogram.

*Those with symptomatic HFrEF ideally should be seen within 1 week of hospital discharge.

IMMUNOTHERAPY-RELATED TOXICITIES

Professional Societies/Organizations

NCCN: The NCCN Guidelines for Management of Immunotherapy-Related Toxicities (Supportive Care Guidelines, Version 1.2025 — December 20, 2024) addresses BNP and NTproBNP.

Under Management of Immune Checkpoint Inhibitor-Related Toxicities, Principles of Routine Monitoring for Immune Checkpoint Inhibitors, Pre-Therapy Assessment, Cardiovascular, the NCCN states to 'Consider high-sensitivity troponin and N-terminal prohormone B-type natriuretic peptide (NT-proBNP)' (IMMUNO-2).

In the algorithm for Management of Immune Checkpoint Inhibitor-Related Toxicities / Cardiovascular Adverse Event(s) / Suspected myocarditis, Pericarditis, Large vessel vasculitis / Assessment/Grading:

• Cardiac biomarkers (including but not limited to BNP, or NTproBNP) Footnote: Consider high-sensitivity troponin and NTproBNP at baseline (for identifying those at increased risk) and serially during treatment to detect abnormal blood biomarkers that may precede symptomatic myocarditis induced by Immune Checkpoint Inhibitor (ICI) (ICI_CARDIO-1, ICI_CARDIO-1A).

Additional supportive care for Grade 2 cytokine release syndrome (CRS) includes IV fluid bolus as needed, management as per Grade 3 if no improvement is observed within 24 hours of initiating anti-IL6 therapy, and symptomatic management of organ toxicities. For those with persistent refractory hypotension after two fluid boluses and anti-IL-6 therapy, clinicians should start vasopressors, transfer the patient to an intensive care unit (ICU), consider an echocardiogram,

Page 12 of 19

and initiate more thorough methods of hemodynamic monitoring. Telemetry and electrocardiogram (EKG), along with assessment of troponin and brain natriuretic peptide (BNP) should be done if tachycardia persists (CART-5, MS-44, MS-45).

OTHER INDICATIONS

Any other indication for plasma brain natriuretic peptide (BNP) or NT-proBNP including but not limited to screening for various diagnoses, as part of a panel/profile test, or targeting treatment to specific BNP or NT-proBNP levels, is considered experimental.

There is a lack of well-designed clinical trials in the peer-reviewed scientific literature addressing the impact to long-term health outcomes from using artificial intelligence (AI)-driven cardiac panel blood tests (Neumann, et al., 2020).

In the 2021 Update to the 2017 ACC Expert Consensus Decision Pathway for Optimization of Heart Failure Treatment (ACC/Maddox, et al., 2021), the ACC notes that current evidence does not suggest targeting treatment to specific BNP or NT-proBNP levels.

Further information on BNP or NT-proBNP-guided therapy includes the randomized Guiding Evidence-Based Therapy Using Biomarker-Intensified Treatment in HF (GUIDE-IT) trial which was conducted at 45 clinical sites in the United States and Canada to determine whether NT-proBNP-guided treatment strategy improves clinical outcomes compared to usual care in high-risk patients with HF and reduced ejection fraction (HFrEF). The trial was stopped for futility when 894 (median age, 63; 286 [32% women]) of the planned 1,100 patients had been enrolled and followed for a median of 15 months. Cardiovascular mortality was 12% in the biomarker guided group and 13% in the usual care group (p = 0.75). The authors concluded that in high-risk patients with HFrEF, a strategy of NT-proBNP-guided therapy was not more effective than a usual care strategy in improving outcomes (Felker, et al., 2017).

Health Equity Considerations

Health equity is the highest level of health for all people; health inequity is the avoidable difference in health status or distribution of health resources due to the social conditions in which people are born, grow, live, work, and age.

Social determinants of health are the conditions in the environment that affect a wide range of health, functioning, and quality of life outcomes and risks. Examples include safe housing, transportation, and neighborhoods; racism, discrimination and violence; education, job opportunities and income; access to nutritious foods and physical activity opportunities; access to clean air and water; and language and literacy skills.

Disparities and Vulnerable Populations

The 2022 American College of Cardiology (ACC) and the American Heart Association Guideline for the Management of Heart Failure (Heidenreich, et al., 2022) addresses 'Risk of HF and Outcomes in Special Populations' (Table 27). Vulnerable Populations addressed include:

- Women
- ➤ Older adults (≥ 80y)
- Lower socioeconomic status populations (<\$15,000/y)</p>
- Black populations
- > Hispanic populations
- > Asian and Pacific Islander populations
- Native American and Alaskan Native populations

Page 13 of 19

The ACC provides two Recommendations (both Class 1) for 'Disparities and Vulnerable Populations':

2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure (Heidenreich, et al., 2022) 11.1 Recommendations for Disparities and Vulnerable Populations	Class of Recommendation (COR) and Level of Evidence (LOE)*
In vulnerable patient populations at risk for health disparities, HF risk assessments and multidisciplinary management strategies should target both known risks for cardiovascular disease (CVD) and social determinants of health, as a means toward elimination of disparate HF outcomes	COR: 1; LOE: C-LD
Evidence of health disparities should be monitored and addressed at the clinical practice and the health care system levels	COR: 1; LOE: C-LD

The ACC notes:

- There are important differences in HF incidence, risk factors, clinical care needs, and outcomes between specific patient populations.
- The highest incident of HF is consistently observed in self-identified Black patients. HF hospitalization and mortality rates for Black patients are also higher than for White patients, with the gap increasing over time for young men. These differences are driven mostly by social circumstances; a biological premise or genetic explanation for disease or disease severity should not be inferred by race or ethnicity.
- Important strategies to remove biases within health care professionals and systems impacting minority and socioeconomically disadvantaged patient populations include implicit bias training, recruiting a diverse workforce, and promoting broad access to HF care.

In a Research Letter titled 'Racial Differences in Serial NT-proBNP Levels in Heart Failure Management Insights From the GUIDE-IT Trial', Parcha et al. (2020) noted Black patients with HF had $\approx 21\%$ lower NT-proBNP levels as compared with white patients. Despite this, NT-proBNP concentrations of $\leq 1,000$ pg/mL had prognostic significance in both Black patients and white patients. Black patients with HF had a higher risk for adverse cardiovascular outcomes compared with their white counterparts. Parcha et al. (2020) summarized achieving a target NT-proBNP level of ≤ 1000 pg/mL has favorable prognostic implications in both Black patients and white patients with HF, but the prognosis is worse for Black patients at either level of achieved NT-proBNP.

Medicare Coverage Determinations

	Contractor	Determination Name/Number	Revision Effective Date
NCD		No Determination found	
LCD		Numerous	

Note: Please review the current Medicare Policy for the most up-to-date information. (NCD = National Coverage Determination; LCD = Local Coverage Determination)

Appendix

Applying ACC/AHA Class of Recommendation and Level of Evidence to Clinical Strategies, Interventions, Treatments, or Diagnostic Testing in Patient Care (Updated 2022)

Page 14 of 19

The Class (Strength) of Recommendation (COR) indicates the strength of recommendation, encompassing the estimated magnitude and certainty of benefit in proportion to risk.

Class I – Strong (is recommended)

Class 2a – Moderate (is reasonable)

Class 2b – Weak (may/might be reasonable)

Class 3 – No benefit (Moderate) (is not recommended)

Class 3 – Harm (Strong) (potentially harmful)

The Level (Quality) of Evidence (LOE) rates the quality of scientific evidence supporting the intervention on the basis of the type, quantity, and consistency of data from clinical trials and other sources.

Level A – High quality evidence from more than one randomized clinical trial, Metaanalyses of high-quality randomized clinical trials, One or more randomized clinical trials corroborated by high-quality registry.

Level B-R – Randomized. Moderate quality evidence from one or more randomized clinical trials, Meta-analyses of moderate-quality randomized clinical trials.

Level B-NR – Non-randomized. Moderate quality evidence from one or more well-designed, well-executed nonrandomized studies, observational studies, or registry studies, Meta-analyses of such studies.

Level C-LD – Limited data. Randomized or nonrandomized observational or registry studies with limitations of design or execution, Meta-analyses of such studies, Physiological or mechanistic studies of human subjects.

Level C-EO - Expert Opinion. Consensus expert opinion based on the clinical experience

References

- 1. Centers for Medicare and Medicaid Services (CMS). Medicare Coverage Database. Accessed March 2025. Available at URL address: https://www.cms.gov/medicare-coverage-database/search.aspx
- 2. Centers for Medicare and Medicaid Services. Local Coverage Determination (LCD): B-Type Natriuretic Peptide (BNP) Testing. Accessed March 2025. Available at URL address: https://www.cms.gov/medicare-coverage-database/reports/local-coverage-final-lcds-alphabetical-report.aspx?lcdStatus=all
- 3. Chow SL, Maisel AS, Anand I, Bozkurt B, de Boer RA, American Heart Association Clinical Pharmacology Committee of the Council on Clinical Cardiology; Council on Basic Cardiovascular Sciences; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; Council on Epidemiology and Prevention; Council on Functional Genomics and Translational Biology; and Council on Quality of Care and Outcomes Research, et al. Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement From the American Heart Association. Circulation. 2017 May 30;135(22):e1054-e1091. Erratum for: Circulation. 2017 May 30;135(22):e1054-e1091. Accessed at URL address: https://professional.heart.org/en/guidelines-and-statements
- 4. Daubert MA, Adams K, Yow E, Barnhart HX, Douglas PS, et al. NT-proBNP Goal Achievement Is Associated With Significant Reverse Remodeling and Improved Clinical Outcomes in HFrEF. JACC Heart Fail. 2019 Feb;7(2):158-168.

Page 15 of 19

- 5. Dyer AK, Barnes AP, Fixler DE, Shah TK, Sutcliffe DL, Hashim I, Drazner MH, de Lemos JA. Use of a highly sensitive assay for cardiac troponin T and N-terminal pro-brain natriuretic peptide to diagnose acute rejection in pediatric cardiac transplant recipients. Am Heart J. 2012 Apr;163(4):595-600.
- 6. Felker GM, Anstrom KJ, Adams KF, Ezekowitz JA, Fiuzat M, et al. Effect of Natriuretic Peptide-Guided Therapy on Hospitalization or Cardiovascular Mortality in High-Risk Patients With Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA. 2017 Aug 22;318(8):713-720.
- 7. Galvani M, Ottani F, Oltrona L, Ardissino D, Gensini GF, Italian Working Group on Atherosclerosis, Thrombosis, and Vascular Biology and the Associazione Nazionale Medici Cardiologi Ospedalieri (ANMCO), et al. N-terminal pro-brain natriuretic peptide on admission has prognostic value across the whole spectrum of acute coronary syndromes. Circulation. 2004 Jul 13;110(2):128-34.
- 8. Geiger M, Harake D, Halnon N, Alejos JC, Levi DS. Screening for rejection in symptomatic pediatric heart transplant recipients: the sensitivity of BNP. Pediatr Transplant. 2008 Aug;12(5):563-9
- 9. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2022 May 3;79(17):e263-e421.
- 10. Huelsmann M, Neuhold S, Resl M, Strunk G, Brath H, et al. PONTIAC (NT-proBNP selected prevention of cardiac events in a population of diabetic patients without a history of cardiac disease): a prospective randomized controlled trial. J Am Coll Cardiol. 2013 Oct 8;62(15):1365-72.
- 11. International Society for Heart and Lung Transplantation (ISHLT). Standards & Guidelines. Accessed March 2025. Available at URL address: https://www.ishlt.org/education-and-publications/standards-guidelines
- 12. Isselbacher EM, Preventza O, Hamilton Black J 3rd, Augoustides JG, Beck AW, et al. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation. 2022 Dec 13;146(24):e334-e482.
- 13. James SK, Lindahl B, Siegbahn A, Stridsberg M, Venge P, et al. N-terminal pro-brain natriuretic peptide and other risk markers for the separate prediction of mortality and subsequent myocardial infarction in patients with unstable coronary artery disease: a Global Utilization of Strategies To Open occluded arteries (GUSTO)-IV substudy. Circulation. 2003 Jul 22;108(3):275-81.
- 14. Januzzi JL, Butler J, Fombu E, Maisel A, McCague K, Piña IL, Prescott MF, Riebman JB, Solomon S. Rationale and methods of the Prospective Study of Biomarkers, Symptom Improvement, and Ventricular Remodeling During Sacubitril/Valsartan Therapy for Heart Failure (PROVE-HF). Am Heart J. 2018 May;199:130-136.
- 15. Januzzi JL Jr, Camacho A, Piña IL, Rocha R, Felker GM, PROVE-HF Investigators, et al. Reverse Cardiac Remodeling and Outcome After Initiation of Sacubitril/Valsartan. Circ Heart Fail. 2020 Jun;13(6):e006946.

- 16. Kittleson MM, Panjrath GS, Amancherla K, Davis LL, Deswal A, Dixon DL, Januzzi JL Jr, Yancy CW. 2023 ACC Expert Consensus Decision Pathway on Management of Heart Failure With Preserved Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2023 May 9;81(18):1835-1878.
- 17. Knecht KR, Alexander ML, Swearingen CJ, Frazier EA. NTproBNP as a marker of rejection in pediatric heart transplant recipients. Pediatr Transplant. 2012 Jun;16(4):335-9.
- 18. Kragelund C, Gronning B, Kober L, Hildebrandt P, Steffensen R. N-terminal pro-b-type natriuretic peptide and long-term mortality in stable coronary heart disease. N Engl J Med. 2005 Feb 17;352(7):666-75.
- 19. Ledwidge M, Gallagher J, Conlon C, Tallon E, O'Connell E, et al. Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA. 2013 Jul 3;310(1):66-74.
- 20. Lindblade CL, Chun DS, Darragh RK, Caldwell RL, Murphy DJ, Schamberger MS. Value of plasma B-type natriuretic peptide as a marker for rejection in pediatric heart transplant recipients. Am J Cardiol. 2005 Apr 1;95(7):909-11.
- 21. Maddox TM, Januzzi JL Jr, Allen LA, Breathett K, Brouse S, Butler J, Davis LL, Fonarow GC, Ibrahim NE, Lindenfeld J, Masoudi FA, Motiwala SR, Oliveros E, Walsh MN, Wasserman A, Yancy CW, Youmans QR. 2024 ACC Expert Consensus Decision Pathway for Treatment of Heart Failure With Reduced Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2024 Apr 16;83(15):1444-1488.
- 22. Morrow Da, de Lemos JA, Sabatine MS, Murphy SA, Demopoulos LA, DiBattiste PM, et al. Evaluation of B-type natriuretic peptide for risk assessment in unstable angina/non-ST-elevation myocardial infarction: B-type natriuretic peptide and prognosis in TACTICS-TIMI 18. J Am Coll Cardio. 2003;41(8):1264-72.
- 23. Morrow DA, de Lemos JA, Blazing MA, Sabatine MS, Murphy SA, Jarolim P, et al.; A to Z Investigators. Prognostic value of serial B-type natriuretic peptide testing during follow-up of patients with unstable coronary artery disease. JAMA. 2005 Dec 14;294(22):2866-71.
- 24. National Comprehensive Cancer Network® (NCCN). NCCN GUIDELINES™ Clinical Practice Guidelines in Oncology. National Comprehensive Cancer Network. March 2025 Accessed. Available at URL address: http://www.nccn.org/https://www.nccn.org/guidelines/category_1 https://www.nccn.org/guidelines/category_3
- 25. Neumann JT, Sörensen NA, Zeller T, Magaret CA, Barnes G, Rhyne RF, et al. Application of a machine learning-driven, multibiomarker panel for prediction of incident cardiovascular events in patients with suspected myocardial infarction. Biomark Med. 2020 Jun;14(9):775-784.
- 26. Omland T, Sabatine MS, Jablonski KA, Rice MM, Hsia J, Wergeland R, et al. PEACE Investigators. Prognostic value of B-Type natriuretic peptides in patients with stable coronary artery disease: the PEACE Trial. J Am Coll Cardiol. 2007 Jul 17;50(3):205-14.

- 27. Parcha V, Patel N, Kalra R, Arora G, Januzzi JL Jr, Felker GM, et al. Racial Differences in Serial NT-proBNP Levels in Heart Failure Management: Insights From the GUIDE-IT Trial. Circulation. 2020 Sep 8;142(10):1018-1020.
- 28. Peled Y, Ducharme A, Kittleson M, Bansal N, et al. International Society for Heart and Lung Transplantation Guidelines for the Evaluation and Care of Cardiac Transplant Candidates-2024. J Heart Lung Transplant. 2024 Oct;43(10):1529-1628.e54.
- 29. Pop-Busui R, Januzzi JL, Bruemmer D, Butalia S, Green JB, Horton WB, Knight C, Levi M, Rasouli N, Richardson CR. Heart Failure: An Underappreciated Complication of Diabetes. A Consensus Report of the American Diabetes Association. Diabetes Care. 2022 Jul 7;45(7):1670-1690.
- 30. Prevencio. Clinical evidence. Accessed March 2025. Available at URL address: https://prevenciomed.com/healthcare-professionals
- 31. Rossano JW, Denfield SW, Kim JJ, Price JF, Jefferies JL, Decker JA, Smith EO, Clunie SK, Towbin JA, Dreyer WJ. B-type natriuretic peptide is a sensitive screening test for acute rejection in pediatric heart transplant patients. J Heart Lung Transplant. 2008 Jun;27(6):649-54.
- 32. Thompson A, Fleischmann KE, Smilowitz NR, de Las Fuentes L, Mukherjee D, Peer Review Committee Members, et al. 2024 AHA/ACC/ACS/ASNC/HRS/SCA/SCCT/SCMR/SVM Guideline for Perioperative Cardiovascular Management for Noncardiac Surgery: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2024 Nov 5;150(19):e351-e442. doi: 10.1161/CIR.000000000001285. Epub 2024 Sep 24. Erratum in: Circulation. 2024 Nov 19;150(21):e466.
- 33. U.S. Food and Drug Administration. Center for Devices and Radiological Health. Elecys® proBNP assay. 510(k) number K032646. Decision date November 12, 2003. Accessed March 2025. Available at URL address: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K032646 https://www.accessdata.fda.gov/cdrh_docs/reviews/K032646.pdf
- 34. U.S. Food and Drug Administration. Center for Devices and Radiological Health. Triage® BNP Test. 510(k) number K051787. Decision date September 22, 2005. Accessed March 2025. Available at URL address: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K051787 https://www.accessdata.fda.gov/cdrh_docs/reviews/K051787.pdf
- 35. Velleca A, Shullo MA, Dhital K, Azeka E, Colvin M, et al. The International Society for Heart and Lung Transplantation (ISHLT) guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2023 May;42(5):e1-e141.
- 36. Wright SP, Doughty RN, Pearl A, Gamble GD, Whalley GA, Walsh HJ, et al. Plasma aminoterminal pro-brain natriuretic peptide and accuracy of heart-failure diagnosis in primary care: a randomized, controlled trial. J Am Coll Cardiol. 2003 Nov 19;42(10):1793-800.
- 37. Writing Committee Members, Otto CM, Nishimura RA, Bonow RO, Carabello BA, et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on

- Clinical Practice Guidelines. J Am Coll Cardiol. 2021 Feb 2;77(4):e25-e197. Erratum for: Circulation. 2021 Feb 2;143(5):e72-e227.
- 38. Writing Committee; Drazner MH, Bozkurt B, Cooper LT, et al. 2024 ACC Expert Consensus Decision Pathway on Strategies and Criteria for the Diagnosis and Management of Myocarditis: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2025 Feb 4;85(4):391-431.
- 39. Writing Committee, Maddox TM, Januzzi JL Jr, Allen LA, Breathett K, Butler J, et al. 2021 Update to the 2017 ACC Expert Consensus Decision Pathway for Optimization of Heart Failure Treatment: Answers to 10 Pivotal Issues About Heart Failure With Reduced Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021 Feb 16;77(6):772-810.
- 40. Writing Committee; Kittleson MM, Ruberg FL, Ambardekar AV, Brannagan TH, et al. 2023 ACC Expert Consensus Decision Pathway on Comprehensive Multidisciplinary Care for the Patient With Cardiac Amyloidosis: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2023 Mar 21;81(11):1076-1126. doi: 10.1016/j.jacc.2022.11.022. Epub 2023 Jan 23. Erratum in: J Am Coll Cardiol. 2023 Mar 21;81(11):1135.

Revision Details

Type of Revision	Summary of Changes	Date
Focused Review	No policy statement changes	10/15/2025
Annual review	Revised policy statement	5/15/2025
Annual review	Revised policy statement	5/15/2024

[&]quot;Cigna Companies" refers to operating subsidiaries of The Cigna Group. All products and services are provided exclusively by or through such operating subsidiaries, including Cigna Health and Life Insurance Company, Connecticut General Life Insurance Company, Evernorth Behavioral Health, Inc., Cigna Health Management, Inc., and HMO or service company subsidiaries of The Cigna Group. © 2025 The Cigna Group.